991 research outputs found

    Exploring Exogenic Sources for the Olivine on Asteroid (4) Vesta

    Full text link
    The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System's history. Ground-based and Hubble Space Telescope (HST) observations of asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA's Dawn spacecraft has shown that this olivine-bearing unit is actually impact melt in the ejecta of Oppia crater. The lack of widespread mantle olivine, exposed during the formation of the 19 km deep Rheasilvia basin on Vesta's South Pole, further complicated this picture. Ammannito et al., (2013a) reported the discovery of local scale olivine-rich units in the form of excavated material from the mantle using the Visible and InfraRed spectrometer (VIR) on Dawn. Here we explore alternative sources for the olivine in the northern hemisphere of Vesta by reanalyzing the data from the VIR instrument using laboratory spectral measurements of meteorites. We suggest that these olivine exposures could be explained by the delivery of olivine-rich exogenic material. Based on our spectral band parameters analysis, the lack of correlation between the location of these olivine-rich terrains and possible mantle-excavating events, and supported by observations of HED meteorites, we propose that a probable source for olivine seen in the northern hemisphere are remnants of impactors made of olivine-rich meteorites. Best match suggests these units are HED material mixed with either ordinary chondrites, or with some olivine-dominated meteorites such as R-chondrites.Comment: 62 pages, 12 figures, 4 tables; Icarus, Available online 30 January 2015, ISSN 0019-1035, http://dx.doi.org/10.1016/j.icarus.2015.01.01

    Identification of the dominant recombination process for perovskite solar cells based on machine learning

    Get PDF
    Over the past decade, perovskite solar cells have become one of the major research interests of the photovoltaic community, and they are now on the brink of catching up with the classical inorganic solar cells, with efficiency now reaching up to 25%. However, significant improvements are still achievable by reducing recombination losses. The aim of this work is to develop a fast and easy-to-use tool to pinpoint the main losses in perovskite solar cells. We use large-scale drift-diffusion simulations to get a better understanding of the light intensity dependence of the open-circuit voltage and how it correlates to the dominant recombination process. We introduce an automated identification tool using machine learning methods to pinpoint the dominant loss using the light intensity-dependent performances as an input. The machine learning was trained using >2 million simulations and gives an accuracy of the prediction up to 82%. Le Corre et al. demonstrate the application of machine learning methods to identify the dominant recombination process in perovskite solar cells with 82% accuracy. The machine learning algorithms are trained and tested using large-scale drift-diffusion simulations, and their applicability on real solar cells is also demonstrated on devices previously reported

    Key Parameters Requirements for Non‐Fullerene‐Based Organic Solar Cells with Power Conversion Efficiency >20%

    Get PDF
    The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single‐junction and two‐terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single‐junction and two‐terminal tandem NFA‐based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single‐junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10−3 cm2 V−1 s−1 in combination with low nongeminate recombination rate constants of 10−12 cm3 s−1 could lead to PCE values in excess of 20% and 25% for single‐junction and two‐terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single‐junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics

    Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals

    Get PDF
    Hybrid halide perovskites have great potential for application in optoelectronic devices. However, an understanding of some basic properties, such as charge-carrier transport, remains inconclusive, mainly due to the mixed ionic and electronic nature of these materials. Here, we perform temperature-dependent pulsed-voltage space-charge-limited current measurements to provide a detailed look into the electronic properties of methylammonium lead tribromide (MAPbBr(3)) and methylammonium lead triiodide (MAPbI(3)) single crystals. We show that the background carrier density in these crystals is orders of magnitude higher than that expected from thermally excited carriers from the valence band. We highlight the complexity of the system via a combination of experiments and drift-diffusion simulations and show that different factors, such as thermal injection from the electrodes, temperature-dependent mobility, and trap and ion density, influence the free-carrier concentration. We experimentally determine effective activation energies for conductivity of (349 +/- 10) meV for MAPbBr3 and (193 +/- 12) meV for MAPbI(3), which includes the sum of all of these factors. We point out that fitting the dark current density-voltage curve with a drift-diffusion model allows for the extraction of intrinsic parameters, such as mobility and trap and ion density. From simulations, we determine a charge-carrier mobility of 12.9 cm(2)/Vs, a trap density of 1.52 x 10(13) cm(-3), and an ion density of 3.19 x 10(12) cm(-3) for MAPbBr(3) single crystals. Insights into charge-carrier transport in metal-halide perovskite single crystals will be beneficial for device optimization in various optoelectronic applications

    The contamination of the surface of Vesta by impacts and the delivery of the dark material

    Full text link
    The Dawn spacecraft observed the presence of dark material, which in turn proved to be associated with OH and H-rich material, on the surface of Vesta. The source of this dark material has been identified with the low albedo asteroids, but it is still a matter of debate whether the delivery of the dark material is associated with a few large impact events, to micrometeorites or to the continuous, secular flux of impactors on Vesta. The continuous flux scenario predicts that a significant fraction of the exogenous material accreted by Vesta should be due to non-dark impactors likely analogous to ordinary chondrites, which instead represent only a minor contaminant in the HED meteorites. We explored the continuous flux scenario and its implications for the composition of the vestan regolith, taking advantage of the data from the Dawn mission and the HED meteorites. We used our model to show that the stochastic events scenario and the micrometeoritic flux scenario are natural consequences of the continuous flux scenario. We then used the model to estimate the amounts of dark and hydroxylate materials delivered on Vesta since the LHB and we showed how our results match well with the values estimated by the Dawn mission. We used our model to assess the amount of Fe and siderophile elements that the continuous flux of impactors would mix in the vestan regolith: concerning the siderophile elements, we focused our attention on the role of Ni. The results are in agreement with the data available on the Fe and Ni content of the HED meteorites and can be used as a reference frame in future studies of the data from the Dawn mission and of the HED meteorites. Our model cannot yet provide an answer to the fate of the missing non-carbonaceous contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the journal ICARUS, "Dark and Bright Materials on Vesta" special issu

    Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements

    Get PDF
    Space-charge-limited current (SCLC) measurements have been widely used to study the charge carrier mobility and trap density in semiconductors. However, their applicability to metal halide perovskites is not straightforward, due to the mixed ionic and electronic nature of these materials. Here, we discuss the pitfalls of SCLC for perovskite semiconductors, and especially the effect of mobile ions. We show, using drift-diffusion (DD) simulations, that the ions strongly affect the measurement and that the usual analysis and interpretation of SCLC need to be refined. We highlight that the trap density and mobility cannot be directly quantified using classical methods. We discuss the advantages of pulsed SCLC for obtaining reliable data with minimal influence of the ionic motion. We then show that fitting the pulsed SCLC with DD modeling is a reliable method for extracting mobility, trap, and ion densities simultaneously. As a proof of concept, we obtain a trap density of 1.3 × 1013 cm-3, an ion density of 1.1 × 1013 cm-3, and a mobility of 13 cm2 V-1 s-1 for a MAPbBr3 single crystal

    Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems

    Get PDF
    Biological invasions pose a threat to nearly every ecosystem worldwide.1,2 Although eradication programs can successfully eliminate invasive species and enhance native biodiversity, especially on islands,3 the effects of eradication on cross-ecosystem processes are unknown. On islands where rats were never introduced, seabirds transfer nutrients from pelagic to terrestrial and nearshore marine habitats, which in turn enhance the productivity, biomass, and functioning of recipient ecosystems.4–6 Here, we test whether rat eradication restores seabird populations, their nutrient subsidies, and some of their associated benefits for ecosystem function to tropical islands and adjacent coral reefs. By comparing islands with different rat invasion histories, we found a clear hierarchy whereby seabird biomass, seabird-driven nitrogen inputs, and the incorporation of seabird-derived nutrients into terrestrial and marine food chains were highest on islands where rats were never introduced, intermediate on islands where rats were eradicated 4–16 years earlier, and lowest on islands with invasive rats still present. Seabird-derived nutrients diminished from land to sea and with increasing distance to rat-eradicated islands, but extended at least 300 m from shore. Although rat eradication enhanced seabird-derived nutrients in soil, leaves, marine algae, and herbivorous reef fish, reef fish growth was similar around rat-eradicated and rat-infested islands. Given that the loss of nutrient subsidies is of global concern,7 that removal of invasive species restores previously lost nutrient pathways over relatively short timescales is promising. However, the full return of cross-ecosystem nutrient subsidies and all of their associated demographic benefits may take multiple decades

    Lymphome T cutané et systémique traité avec succÚs par greffe haplo-identique

    Get PDF
    BACKGROUND: Herein, we report a case of systemic cutaneous T-cell lymphoma refractory to standard therapy, the course of which resulted in haplo-identical bone marrow grafting. PATIENTS AND METHODS: A 53-year-old woman consulted for facial erythema with infiltration, keratotic lesions on the trunk, and adenopathies measuring around 1cm on the axilla and inguinal folds. A diagnosis was made of SĂ©zary syndrome (SS), a leukaemic form of epidermotropic cutaneous T-cell lymphoma. After three years of treatment with methotrexate, the patient developed transformed SS with visceral involvement. Given the high risk of relapse and the absence of an HLA-compatible donor, haploidentical bone marrow grafting was performed. The patient was still in complete remission two and a half years later. The disease course was nevertheless marked by the emergence one year after grafting of a Blaschko-distributed lichenoid eruption having histological features consistent with chronic graft-versus-host disease (GVHD); treatment with topical betamethasone proved efficacious. DISCUSSION: To our knowledge, this is the first reported case of haploidentical grafting for systemic and transformed cutaneous T-cell lymphoma. This approach could henceforth represent a therapeutic option for patients requiring an allograft in the absence of compatible donors. The Blaschko-distributed lichenoid lesions attributed to chronic GVHD could be the result of reduced immune tolerance to abnormal embryological clones leading to a T-lymphocyte-mediated inflammatory reaction

    Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis

    Get PDF
    The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection
    • 

    corecore